27th Annual CO₂ Conference

CO₂ Induced Oil Swelling and Results from a Huff & Puff in a Greenfield ROZ, Carper (SS) Illinois

Nate Grigsby, Nathan Webb, Fang Yang, Dmytro Lukhtai, and Scott Frailey

Illinois State Geological Survey

University of Illinois at Urbana-Champaign

Presented at the 27th Annual CO₂ Conference Thursday Dec 9th, 2021

Midland, Texas

Acknowledgements

- Research herein supported by US Department of Energy contract number DE-FE0031700, FPM Andrea McNemar
- Steve Sargent (ISGS) provided instrumentation and remote monitoring capabilities
- Bi-Petro Inc. is the greenfield site operator
- Projeo Corp. supported ISGS test plan implementation; Natural Gas Services Inc. assisted with site management and implementation of ISGS testing plan; MacCarb supplied CO₂
- Through a university grant, IHS Petra, Geovariances Isatis, and Landmark Software were used for the geologic, geocellular, and reservoir modeling, respectively
- For project information, including reports and presentations, please visit:

http://www.isgs.illinois.edu/research/ERD/NCO2EOR

Objectives

- DOE objectives
 - Develop specific subsurface engineering approaches leveraging CO₂ injection field tests and applied R&D, that address research needs critical for advancing CCS to commercial scale
- ISGS project objectives
 - Screen for ROZs using analysis of empirical data and basin evolution modeling
 - Characterize stacked brownfield/greenfield siliciclastic ROZs at field lab sites
 - Conduct injection tests and collect and analyze core and logs at field lab sites
 - Use calibrated simulation models and LCA to identify development strategies
- ISGS field pilot objectives
 - Characterize geology and fluids in ROZ
 - Demonstrate the efficacy of CO₂ EOR and storage in a siliciclastic ROZ

Pre-Test Characterization: Carper and Borden (Caprock) ILB ROZ

- Mississippian (Osagean) deposits
- Carper sandstone encased in the basal Borden Siltstone
- Overlain by middle-Miss limestones
- Secondary seals in Chesterian shales

From Kolata and Nimz, 2010

ILLINOIS Illinois State Geological Survey Prairie Research Institute

Pre-Test Characterization: Test Well Geology

- Drilled in 2016
- Targeting 15-foot interval
 - 3690-3705
 - Very fine-grained sandstone with thin shale laminations in middle
 - 15-foot shale above and below
- ~100 feet of core (target and underlying units)
 - Low porosity and permeability
 - Core porosity matches DPHI
 - Submitted for detailed petrography, XRD, core flood testing

I ILLINOIS

PRAIRIE RESEARCH INSTITUTE

Illinois State Geological Survey

Pre-Test Characterization: Test Well S₀

- Target has oil saturation
 - Core has oil in target sandstone bed and thin zone in a deeper sandstone bed
 - Target sandstone bed has oil shows in nearby wells
 - S_O calculated ~25% via log analyses
- This oil is immobile in the presence of water
 - 6 months of pumping with no oil production
 - Interpretation: Greenfield ROZ
 - 15 miles from Carper production
 - Nearby wells have oil shows but no production

Illinois State Geological Survey

PRAIRIE RESEARCH INSTITUTE

Pre-Test: Natural Fracture Network

- Core perm too low to produce 250 bbls fluid/day)
 - Need 3 orders of magnitude higher perm
- Effective permeability validated by pressure transient tests, baseline production, and CO₂ injection tests

Permeability (md)	Thickness (ft)	Rate at 2 months (stb/day)	Permeability - Thickness (md-ft)
20	15	248	300
15	15	192	225
10	15	134	150
1	150	182	150
0.2	750	234	150

ILLINOIS

Ilinois State Geological Survey

Pre-Test: HnP Simulation

Input

- Matrix: 0.2 mD, 11% porosity, Soi=25%
- Natural fractures tuned to match historical production (Soi=2%)
- CO₂ injection at 60 t/d for 16 days, soak 14 days, then produce liquid at 400 stb/d

Findings

- Oil production
 - 1.1 stb/d peak rate
 - Total 15 stb at the end of first month
- CO₂ production
 - 64% at 1-month production
 - 80% at 2-month production

Pre-Test: HnP Simulation con't

 Low porosity matrix and natural fracture network results in CO₂ staying in fractures and having limited contact with matrix

Top view of gas and oil saturation at the end of CO₂ injection

ILLINOIS Illinois State Geological Survey Prairie research institute

Pre-Test: Line Drive Simulations

Direct line drive

- 20-acre pattern
- CO₂ inj rate: 200 ton/d (3.4 MMscf/day)
- Results:
- Single pattern
 - Peak oil rate: 26 stb/day
 - 1,200-1,300 stb
- Metrics after 5-months:
 - Oil recovery = 1.6% OOIP
 - Net utilization = 56 Mscf/stb (3.4 ton/stb)
 - Gross utilization = 428 Mscf/stb (25 ton/stb)

Gas saturation in fracture (side view of middle wells)

10

ILLINOIS
Illinois State Geological Survey
PRAIRIE RESEARCH INSTITUTE

HnP: Pilot Results

Results

- Injected
 - 1,000 tons of CO₂
 - 25 days
- Produced
 - 14,000 bbls water
 - 1 month flowing
 - 5 months pumping
 - 360 tons of CO₂
 - 640 tons stored
 - 65 bbls oil
 - 5 months of pumping
 - Still 0.5 bbls/day when shut in
 - Includes 15 bbls of measurement error

Suppressed oil response

- Operational
 - Sand in well forced pump to be placed ~150 ft above perforations
 - Equipment limited production rate (size of gas/liquid and gunbarrel separators)
- Measurement error
 - Oil in brine tank/disposal meter

Post Test Interpretation: Oil Properties

- 9 samples taken from test well over course of testing
- Oil in test well is significantly denser and more viscous than published values

Post Test Interpretation: Oil Properties

- GC analysis of oil samples before and after CO₂ injection
- Light ends were stripped before CO₂ injection. They appear to be slightly more attenuated after CO₂ injection

Post Test Interpretation: Core Flood

- 30 cP oil
- Waterflood: Residual oil saturation (S_{ORW}) = 60%
- CO₂ flood: Residual oil saturation (S_{ORCO2})= 16%
- Interpretation
 - S_o = 25% from well log analysis
 - S_{oi} <<<<S_{ORW}?
 - CO₂ flood of matrix would require 25% S_{Oi} to swell to 60% for Darcy flow
 - CO₂ can mobilize 30 cP oil from matrix

Post Test Interpretation: Gas Properties

• CO₂ in vented gas reduces from 100% to 90% at end of pumping. This is accompanied by an increase in hydrocarbons

Post Test Interpretation: Gas Properties

- Evaluating hydrocarbons and comparing them to oil samples to determine if they represent CO_2 /oil mixing

Post Test Interpretation: HnP Simulation

- Calibrated reservoir model to water injection and multi-rate tests; tuned EOS data to measured data (29 API and 30 cP at 60 °F); adjusted Soi and Sor in both matrix and fracture trying to match oil production
- CO₂ venting constrained by gas rate, and production constrained by water production rate
- Simulated peak rate 1.4 stb/d (measured 2.5 stb/d, which is affected by operation rather than following natural decline trend), simulated total oil production at 7 month 86 stb (measured 63 stb).
- Soi in fracture needs to be 15% to match cumulative oil production.

PRAIRIE RESEARCH INSTITUTE

Post Test Interpretation: HnP Simulation

- CO₂ stays in fracture, cannot move the 30cP oil in matrix
- Oil is produced from the fracture

Top view of gas and oil saturation in fracture and matrix

ILLINOIS Illinois State Geological Survey PRAIRIE RESEARCH INSTITUTE

Post Test Interpretation: EOR and Storage

- How did CO₂ enhance 30 cP oil recovery?
 - Natural fractures (likely)
 - Residual oil in fractures produced via Darcy flow (near wellbore CO₂ expansion)
 - Swelling residual oil in fractures (plus produced light hydrocarbons in gas)
 - Matrix (less likely)
 - Darcy Flow: CO₂ would displace mobile water instead of oil if it entered very small water wet pores
 - Swelling: 25% S_{Oi} would not swell to 60% S_{ORW} to mobilize oil
- How was CO₂ stored?
 - Stayed in fractures, moved far enough away that it didn't get produced
 - Hydraulic fracture breached seal, CO₂ is in upper Carper
 - Entered matrix

Post Test Interpretation: Calibrated Line Drive

- Line drive showed low oil recovery factor but great storage potential
- Direct line drive CO₂ EOR in 80-acre pattern with a pattern width to length ratio of 1:8 (660 ft :5280 ft)
- SAG to slow CO₂ breakthrough and enhance CO₂ interaction with matrix
- Inject 25 days: CO₂ at 40 t/d/w and water at 200 stb/d/w; soak for 25 days; produce for 15 days at maximum gas rate of 20 t/d/w. Repeat for 5 years

Pattern inner well placement: a row of injectors followed by a row of producers, except the side injectors are converted to water injectors, and more water injectors are added above and below to keep CO_2 in the pattern.

PRAIRIE RESEARCH INSTITUTE

Conclusions

- Demonstrate CO₂-EOR and storage
 - HnP exceeded pretest expectations
 - Calibrated line drive simulations show low oil recovery factor but high CO₂ storage
- Characterize rock and fluid properties of ROZ – 30 cP oil
 - Natural fractures within low permeability matrix exerting large influence

