EERC. NORTH DAKOTA.

Energy & Environmental Research Center (EERC)

Lower-Carbon Oil Production via Captured CO₂ EOR and Associated Storage

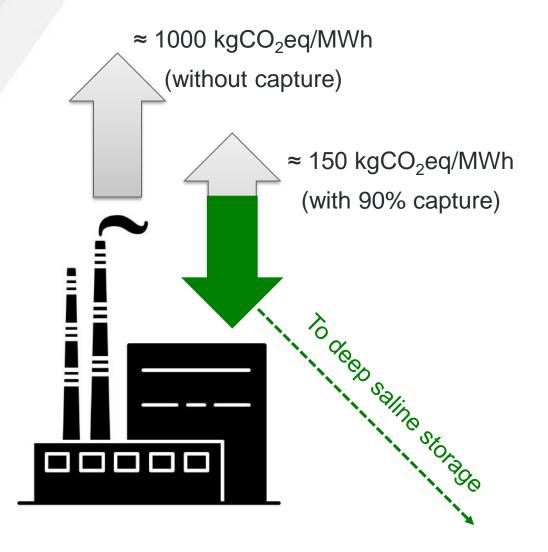
19th Annual EOR Carbon Management Workshop December 7, 2021

Nick Azzolina, Ph.D.

© 2021 University of North Dakota Energy & Environmental Research Center.

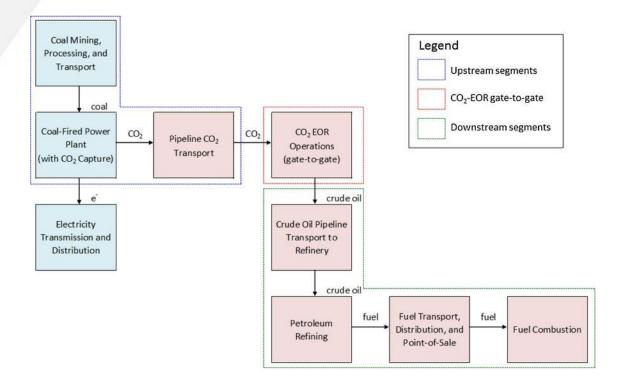
Presentation Outline

- Briefly review terminology used to quantify the carbon intensity of different products.
- Review "dedicated storage" and "associated storage" and what we mean by these two types of CCS/CCUS projects.
- Explain why incremental oil produced via EOR using captured CO₂ from an industrial source has a lower carbon intensity than any other oil in the marketplace.
- Highlight a few caveats and important details about the calculations.



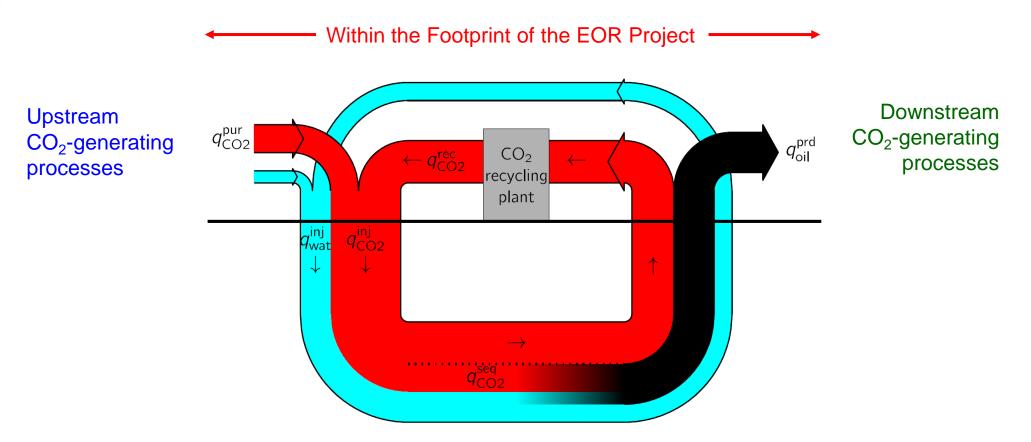
Terminology Overview

- We commonly measure and track three greenhouse gases (GHGs):
 - Carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O)
- We express these three GHGs as "CO₂-equivalents" (CO₂eq) by multiplying the mass of each gas by its 100-year global warming potential:
 - $(CO_2 \times 1) + (CH_4 \times 36) + (N_2O \times 298) = CO_2eq$
- The "carbon intensity" (CI) value of a product is the mass of CO₂eq per unit of product, e.g.,
 - kgCO₂eq/MWh electricity or kgCO₂eq/barrel oil
- Sometimes the CI value is expressed on an "energetics basis" (or other variants), e.g.,
 - gCOeq/MJ combusted gasoline


Dedicated Storage Math is (Relatively) Easy

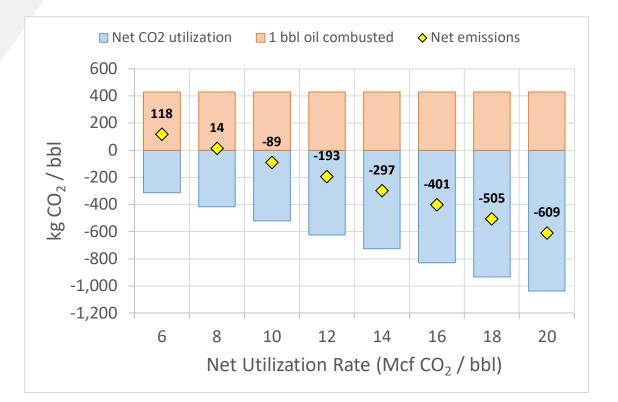
NORTH DAKOTA

- "Dedicated storage" CO₂ captured from an industrial source and permanently stored in a deep saline formation.
- Example:
 - A coal-fired power plant used to emit ~1000 kgCO₂e/MWh
 - We install a capture system running at 90% capture efficiency
 - Small additional coal mining, processing, and transport emissions.
 - Net emissions reduction of ~85%.


Associated Storage Math Gets Complicated

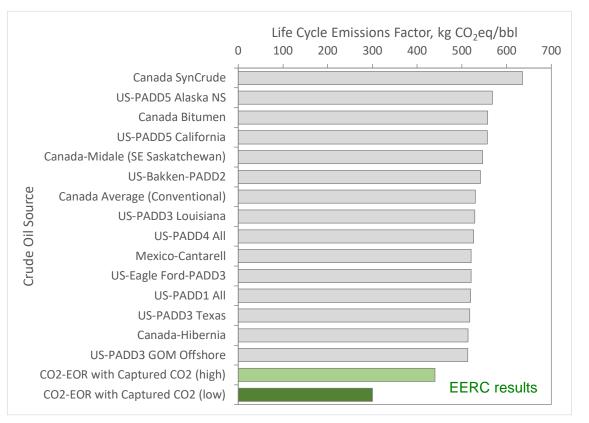
System boundaries for life cycle CO_2 emissions with CO_2 -EOR.

- "Associated storage" CO₂ captured from an industrial source, utilized for EOR, and stored in the reservoir incidental to the CO₂-EOR process.
- Co-products (two or more products in the system, e.g., electricity and oil) complicate the GHG accounting.
- However, detailed studies have shown that the net result is an incremental oil with a lower carbon intensity than other crude oils.


>95% of the Purchased CO₂ is Stored in the Reservoir

Adapted from: van 't Veld, K., Mason, C.F., and Leach, A. (2013) The economics of CO₂ sequestration through enhanced oil recovery. Energy Procedia, 37:6909-6919.

Start Simple: Just the Oil and the Net Utilization



- Historically, operators have tried to minimize net CO₂ utilization rates to improve the efficiency (and profitability) of CO₂-EOR.
- 6-10 Mcf/bbl (312-519 kg/bbl)
- 1 bbl oil combusted emits 430 kg/bbl
- Therefore, ~8.3 Mcf/bbl is the "breakeven" point for oil combustion.
- Higher net CO₂ utilization rates
 >10Mcf/bbl further reduce the net emissions.

Expand the System to Include Up- and Downstream

- We must include:
 - Upstream emissions from the CO₂ capture source and
 - Downstream emissions from crude oil transport, refining, transport of refined fuels to point-of-sale, and fuel combustion.
- However, even with all these additions, the associated storage wins out and the incremental oil has a lower CI value.

Adapted from: Cooney, G., Jamieson, M., Marriott, J., Bergerson, J., Brandt, A., and Skone, T.J., 2017, Updating the U.S. life cycle GHG petroleum baseline to 2014 with projections to 2040 using open-source engineering-based models: Environ. Sci. Technol., v. 51, p. 977–987.

Caveats and Other Considerations

- Every system is site-specific and has unique aspects to the GHG accounting.
- The upstream CO_2 source plays a large role in the final carbon intensity.
- The CO₂ capture rate (at the source) and net CO₂ utilization rate (of the EOR site) are generally the two most important variables to consider.
- As the share of the U.S. domestic crude production includes a larger proportion of incremental oil from captured CO₂-EOR, the overall carbon intensity of petroleum products – gasoline, diesel fuel, heating oil, and jet fuel – will decrease.

EERC. UN NORTH DAKOTA.

Nicholas Azzolina Assistant Director for Applied Artificial Intelligence/Machine Learning (AI/ML) nazzolina@undeerc.org 701.777.5120 (phone) Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone) 701.777.5181 (fax)

EERC. UNIVERSITYOF NORTH DAKOTA.