

UNIVERSITY OF BERGEN Faculty of Mathematics and Natural Sciences

Results from the CO₂ Foam EOR Field Pilot at the East Seminole San Andres Unit, Permian Basin

Zachary Paul Alcorn and Arne Graue

December 9, 2021

2021 CO₂ Conference Midland, TX

May 2021

CO₂ Foam Fundamentals

What?

Dispersion of gas in liquid Stabilized by surfactant

How?

Decreases relative permeability Increases viscosity Injection strategy: SAG or co-injection

Why?

Conformance and mobility control Improve reservoir sweep

 $Sc-CO_2$ EOR mobility challenges: a) poor aerial sweep, b) gas channeling, c) gravity override (Hanssen et al., 1994)

In-depth CO₂ mobility control

Improve CO₂ sweep efficiency, oil recovery and CO₂ utilization

Foam Formulation Design

Laboratory Screening

Foam Stability:

Bulk tests, effect of oxygen scavenger, scale inhibitor, effect of crude oil

Foam Rheology (pore and core):

 Surfactant concentration, foam quality and rate, EOR and CO₂ storage potential

Brattekås et al 2018

Field Injection Unit

Data Collection and Monitoring

Data Collection and Pilot Monitoring

- Obtain baseline and monitor pilot performance to evaluate reservoir response to foam injection.
- Characterize interwell connectivity and CO₂ and water injectivity.

			SAG Cycle																						
	Pre		1		2		3		4		5		6		7		8		9		10		11		Post
Slug																									
Ι₩ΤΤ		х																						х	
Injection Profiles	х	х			х	х					х	х			х	х			х	х			х	х	х
Produced water collection			х	х	х	x	х	х	х	х	х	x	х	x	х	х	х	х							x
DHPG reading		х			х							x				х								х	х

Water CO2

Surfactant

CO₂ IWTT

Objectives

- Determine baseline CO₂ breakthrough time (BT) and migration rate
- Compare it to BT time after foam injection

Non-radioactive gas tracer injected into I1

Monitored P1, P2, P3 and P4

Foam was expected to increase CO₂ breakthrough time.

IWTT – Results

- CO₂ breakthrough from I1 to P1 delayed by 43% during the foam pilot
- Baseline tracers broke through at a higher concentration
 - Tracers during foam injection mostly went through matrix due to reduced CO₂ channeling in a high-permeability zone

Pilot Injector: CO₂ Injectivity Index

CO₂ Slug Injectivity

Injection Profiles – Foam Injector

Baseline CO₂

Baseline Water 7th Surfactant Slug

7th CO₂ slug

Injection Profiles – Foam Injector

Transient Analysis

Larger dP of each consecutive cycle

Indicating reduced mobility and a foam bank developing further into the reservoir.

Reduced mobility during the SAG compared to the WAG

Production Analysis

Production Analysis

- Cumulative oil recovered as a function of pore volume injected.
- Projection of the baseline performance.
 - 1.5 years prior to the start of the pilot with consistent data and minimal operational disruptions in the pattern.

Production Analysis – Pilot Pattern

Objective-Driven Models for Pilot Interpretation

Near Injector Radial Model

Focus Injectivity, foam generation and propagation

I1 Permeability (mD) P1

Cross Section

Interwell connectivity, fluid mobility, transmissibility

Sector Model

Production response

Conclusions

Reduced CO₂ mobility

Increased CO₂ sweep

Improved oil recovery

Improved CO₂ utilization

Ongoing monitoring and analysis

Acknowledgements

The Norwegian Research Council CLIMIT and Gassnova Programs for financial support

zachary.alcorn@uib.no

