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Topics — Massive Scale CCS from a Geomechanical Perspective

* The Need for Massive Scale for Carbon Storage

e Saline Aquifers and Induced Seismicity

* Basal Aquifers and the Critically-Stressed Crust
* Lessons from Induced Seismicity in Oklahoma

* Lessons from Induced Seismicity in the Delaware Basin

* Depleted Oil and Gas Reservoirs and Induced Seismicity
* How Poroelastic Stress Changes Limit Induced Seismicity
 How Past Production has Depleted CCS Reservoirs (Not today)

* Progress to Date



Massive Scale CCS?

Achieving the International Energy Agency’s (IEA) Sustainable Development
Scenario will require 6 Gt scCO, per year to be stored by 2050. Volumetrically
equivalent to 150% of current global oil production.

The CCS industry is expected to reach 1 Gt scCO, per year by 2030.

Today’s carbon sequestration industry must grow by 50 times. ~20 Mt per year of
anthropogenic CO, is currently being injected in 46 projects to reach 2030 targets.

It is estimated that about S1 trillion of investment will be needed to support this
growth, necessitating investment from capital providers across the entire
development pipeline (capture -> transport -> storage).

“Reaching net zero will be virtually impossible with CCUS” — IEA, September 2020



Expectations for CCS are Enormous

CCUS DEPLOYMENT NEEDED TO ACHIEVE 2°C SCENARIO
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Current CCS - ~40 Mt CO,/year (50% is anthropogenic)



Production Tax Credits MAZ’MUTH

45Q and 45X

Carbon Capture and Sequestration (“45Q”)

Hydrogen Production Tax Credit (“45X”)

*

The 45Q credit would be extended to projects beginning
construction before January 1, 2032. Currently, the 45Q credit only
applies to projects beginning construction by December 31, 2025.

Most facilities would be eligible for the 45Q credit if they capture at
least 12,500 tons of qualified CO during the taxable year. Electric
generating facilities would only be eligible for the 45Q credit if they
capture at least 18,750 t of qualified CO during the taxable year and
at least 75% (by mass) of the CO that would be released.

$85/t for gualified CO disposed of by the taxpayer in secure
geological storage and $60/metric ton for qualified CO used by the
taxpayer as a tertiary injectant and disposed of in a qualified
enhanced oil or natural gas recovery project.

lllustrative Example: Production Process Emissions Only

*

A ten-year production tax credit under new section 45X would be
available to producers for clean hydrogen produced after
December 31, 2021, by a taxpayer at a qualified facility beginning
construction by December 31, 2028.

If prevailing wage and apprenticeship requirements are met, the
credit rate is $3.00/kg, adjusted for inflation. If not, then the credit
rate if $0.60/kg. The applicable percentage is sliding scale that
rises from 8% ($0.25) to 100% ($3.00) as Cl falls.

Cl is measured in kg CO, per kg H, produced. If our Cl rises >3.99
kg CO, per kg H, we're better off with 45Q. The exact $/kg
credit is influenced by a producer’s choices.

A taxpayer cannot benefit from both the clean hydrogen PTC and
the 45Q Credit.

$/kg applicable

Minimum %

Captured vs.

Hi CO, /kg Lo CO,/kg % from 45X Avoided vs..ng Avoided $/kg from 45Q Technology
(SMR Baseline)
A 6.00 4.00 8% $0.25 33% 1.03 $0.26
B 3.99 2.50 20% :' i -$-076:)- i -i 56% 1.06 $0.45 SMR shift tail gas
1 1
C 249 1.50 33% i $1.00 i 72% 1.09 $0.60
D 1.49 0.45 50% E $1.50 i 83% 1.1 $0.7 Certain
E 0.44 0.00 100% E__ $3.00 E 95% 113 : $0.82 i ATR or SMR flue gas

Both 45Q and 45X are direct pay credits.

In almost all cases, consider process emissions only, the benefit from 45X is

more favorable than from 45Q.
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Volumetric Assessments of Saline Aquifer Storage
Theoretically Available Pore Space

Atlas V

Saline Formations
“ Assessed

Non-Assessed

Saline rock formations near Belfry, Montana.
Courtesy of John Talbott, BSCSP.
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SALINE FORMATIONS

Saline formations are layers of sedimentary porous and permeable rocks saturated with salty water called

brine. These formations are fairly widespread in both onshore and offshore sedimentary basins throughout
North America and have potential for CO, storage. Saline formation trapping mechanisms include solubility
trapping, mineral trapping, structural trapping, and residual trapping (see page 24 for more information). It
is important that a regionally extensive confining zone (often referred to as caprock or seal) overlies the
porous rock layer.

Saline formations represent an enormous potential for CO, storage, and recent project results suggest
that they can be used as reliable, long-term storage sites. Saline formation storage lacks the economic
incentives of oil and natural gas reservoirs or unmineable coal storage; however, they could serve as buffer
storage for EOR operations.

While assessment continues, DOE has documented approximately 2,379 billion metric tons to more than

21,633 billion metric tons of CO, storage resource in saline formations. For details on saline formation CO,
storage resource by State/Province, see Appendix C. For more information on the methodologies used to

estimate this potential, please see Appendix B.

CO, Storage Resource Estimates
for Saline Formations by RCSP *

Billion Billion Bilon
MetricTons | MetricTons | Metric Tons

BSCSP 21 805 2,152

MGSC 41 163 421

MRCSP 108 122 143

PCOR 305 583

SECARB 1,376 5,257

Swp 256 1,000

WESTCARB 82 398

Total 2379 8,328

* Current as of November 2014; Medium = p50

Mid-range est.
8328 GT tonnes



Realistically Assessing Capacity

Global Storage Resource Classification Illustrative Sequestration Resource Volume

Using SPE Storage Resources Management System (SRMS)

Volumetric Estimate vs. Realistic Estimate

Adjustment for Geologic
Attributes

Commercially
Assessed
A (0.002%

Adjustment for Flow
Modeling

The vast majority of the
lobal uestration resou L )
9 isnniE:ell d'_:“ teri ITCE Realistic Estimate
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Basal Saline Aquifers

Basal Cambrian Sandstone,
Great Plains of the U.S. and Canada

* The aquifer with largest estimated
resources in the area

* Volumetric approach: 223 -721
Gt resources

* Storage formation for Quest and
Aquistore projects

Teletsky et al. (2019) argue that from a flow
modeling perspective, volumetric estimates
are ~10 x too high
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Basal Saline Aquifers

OGCI assessment of the Great Plains

Basal Cambrian Sandstone storage

resource

* Flow modeling: ~3 Gt of capacity
based on injection from 16 major
sources in the area at ~100 MTPA

» Large gap between volumetric and
capacity assessments

* EERC report 2015-EERC-02-14
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Produced Water Disposal is Triggering Earthquakes

WASTE WATER .
DISPOSAL WELL s 07/

~7,000 FT SIS

~16,000 FT

Massive quantities of produced saltwater
(from formations like the Mississippi Lime)
was being injected into the basal Arbuckle

group.
About 3 billion barrels were injected in

north-central Oklahoma (AOIl) over a few
years.

Earthquakes occurring on pre-existing
critically-stressed faults in basement due to
small increases in pore pressure in the
Arbuckle Group

Potentially active faults are likely to be
permeable and extend from the crystalline
basement up into the Arbuckle.



Produced Water Disposal is Triggering Earthquakes
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Monthly injected saltwater volume [m3]

Using the Seismogenic Index Model to Predict How the Rate of

Produced Water Disposal Controls the Rate of Earthquake Triggering
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Using the Seismogenic Index Model to Predict How the Rate of
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110° 105° 100° 95° 90° 85"

* Earthquakes Occur in Basement Rocks
Nearly Everywhere in Intraplate Areas

* The Occurrence of Reservoir-Induced
Seismicity Indicates that Very Small
Pore Pressure Perturbations are
Capable of Triggering Seismicity, Even in
“Stable Areas”
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The Critically-Stressed Crust
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A Simple Representation of Crustal Seismicity

F moves at constant speed

TTTTT T

mg
\ J \ J
Y Y Y
Fault Elastic Crust moving

Plate

Fspring

Frictional Strength

Block jumps ahead in sudden slip events
(like earthquakes) and the stress drops

time

On a Fault
Slip Occurs when T = U0,
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A Simple Representation of Crustal Seismicity
and Earthquake Triggering

FSprmg moves at constant speed

T

mg
\ J \ J
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Fault Elastic Crust moving

Plate

Fspring

Frictional Strength

_______ Frictional Strength After

Increasing Pore Pressure On a Fault

Slip Occurs when T = o,

Block jumps ahead in sudden slip events _
(like earthquakes) and the stress drops 0,=S,- Pp

time
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Stress Measurements Confirm Critically-Stressed Crust
(and the Applicability of Coulomb Faulting Theory)
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Earthquake triggering and large-scale geologic storage of
carbon dioxide

Mark D. Zoback®" and Steven M. Gorelick®
Departments of 2Geophysics and "Environmental Earth System Science, Stanford University, Stanford, CA 94305

Edited by Pamela A. Matson, Stanford University, Stanford, CA, and approved May 4, 2012 (received for review March 27, 2012)

Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO, emissions
associated with coal-based electrical power generation and other industrial sources of CO, [Intergovernmental Panel on Climate Change
(2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group lll of the Intergovernmental Panel on

Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185-
5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO; into the brittle

rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO-

repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions.
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Earthquake Magnitude Depends on Whether Injection Increases
Potentially Activate Basement Faults
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Shallow (Strata-bound) vs Basement-Rooted Faults

o9
i =
2 o log scales
:
s =
< -]
© ©
> 6 s
2016 Pawnee, M5.8 mp & o
£ =
2020 Mentone, M4.9 8 5 IE

2011 Eagle Ford, M4.8
2015 DFW, M4.0 mp 4

3
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M, = (Area) x (Slip) x
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Modeling Basin- and Plume-Scale Processes
of CO, Storage for Full-Scale Deployment

by Quanlin Zhou', Jens T. Birkholzer!, Edward Mehnert?, Yu-Feng Lin®, and Keni Zhang' (2010)
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CO, Injection Into the Mt. Simon Sandstone
At Decatur, lllinois
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New Injection Zone is Still in the Mt. Simon (Above a Mudstone Baffle)
Seismicity is Continuing (at a Lower Rate) on the Same Basement Faults
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Basal Saline Aquifers

Example

 Basal Cambrian Sandstone,
Great Plains

 The aquifer with largest
estimated resources in the
area

e Storage formation for Quest
and Aquistore projects

Is it Feasible to Consider Large-Scale
CO, Storage in Basal Saline Aquifers?




What About Recent Seismicity in the Midland Area?
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Can We Avoid Injection into Potentially Active Faults?

THE GEOLOGICAL SOCIETY
OF AMERICA®

Yes, if we Know the Key Parameters — State of
Stress, Fault Orientations and Pore Pressure
Perturbation

Probabilistic assessment of potential fault slip related to injection-
iInduced earthquakes: Application to north-central Oklahoma, USA

F. Rall Walsh, Ill, and Mark D. Zoback
Department of Geophysics, Stanford University, 397 Panama Mall, Stanford, California 94305, USA

[GEOLOGY

Data Repository item 2016334 | doi:10.1130/G38275.1

© 2016 Geological Society of America. For permission to copy, contact editing@geosociety.org.
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Can We Avoid Injection into Potentially Active Faults?

THE GEOLOGICAL SOCIETY
OF AMERICA®

Yes, But We Need to Incorporate the Uncertainties
of Key Parameters — State of Stress, Fault
Orientations and Pore Pressure Perturbation

Probabilistic assessment of potential fault slip related to injection-
iInduced earthquakes: Application to north-central Oklahoma, USA

F. Rall Walsh, Ill, and Mark D. Zoback
Department of Geophysics, Stanford University, 397 Panama Mall, Stanford, California 94305, USA

[GEOLOGY

Data Repository item 2016334 | doi:10.1130/G38275.1

© 2016 Geological Society of America. For permission to copy, contact editing@geosociety.org.
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Free, Online Software uses QRA to Assess Fault Slip Potential

(URL SCITS.stanford.edu)
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« Earthquake FM
Inversions
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« Utilize Information About
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and Holland, 2015)

« Combine Data to ldentify
Potentially Active Faults
Knowing the Maximum
Change in Pore Pressure
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Number of Realizations
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|dentification of Faults That are Not Likely to be / S P

Fou!t S.’.'p Potenrrol

Problematic is Important Too! .

1-

355N
Probability of Rupture

0 = = ' J ¥ ]/
0 1 2 3 0 50
Pore Pressure Perturbation (MPa) at 5 km Walsh and Zoback (2016)
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Does FSP Work? In Retrospect, Every Significant Eq in OK
Can be Explained by Coulomb Faulting Theory
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Well Shearing and Seismicity Due to Triggered Aseismic Fault Slip

Sichuan Basin

Yungui Plateau

Longmaxi play in Sichuan Basin:

The most commercially successful shale play in China.

Adjacent to two plateaus, complex tectonics.

" Monitoring +
well ¢

&

. Wellhead Fig. 13.21

~ 5 P S

Strike: N57° E

Dip: 70 degrees

Several magnitude 2+ events

The casing deformation point is about

100m away from the fault. .



Probability of Induced Fault Slip as a Function of the Increase in Pore Pressure
During Hydraulic Fracturing

Probability of Fault Slip If 2500 PSI is added to it
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During Hydraulic Fracturing, Many Faults Could
Potentially Slip In the Sichuan Basin
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Application to the Fort Worth Basin
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Topics — Massive Scale CCS from a Geomechanical Perspective

* The Need for Massive Scale for Carbon Storage

 Saline Aquifers and Induced Seismicity

e Basal Aquifers and the Critically-Stressed Crust
e Lessons from Induced Seismicity in Oklahoma

* Lessons from Induced Seismicity in the Delaware Basin

* Depleted Oil and Gas Reservoirs and Induced Seismicity
 How Poroelastic Stress Changes Limit Induced Seismicity
 How Past Production has Depleted CCS Reservoirs (Not today)

* Progress to Date
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Prior oil and gas production can limit the occurrence of
injection-induced seismicity: A case study in the Delaware

Basin of western Texas and southeastern New Mexico, USA

Noam Z. Dvory and Mark D. Zoback
Department of Geophysics, Stanforld University, 397 Panama Mall, Stanford, California 94305, USA
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Topics — Massive Scale CCS from a Geomechanical Perspective

* The Need for Massive Scale for Carbon Storage

 Saline Aquifers and Induced Seismicity

e Basal Aquifers and the Critically-Stressed Crust
e Lessons from Induced Seismicity in Oklahoma

* Lessons from Induced Seismicity in the Delaware Basin

* Depleted Oil and Gas Reservoirs and Induced Seismicity
* How Poroelastic Stress Changes Limit Induced Seismicity
 How Past Production has Depleted CCS Reservoirs (Not today)

* Progress to Date
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No Earthquakes are Not Being Triggered Where
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Topics — Massive Scale CCS from a Geomechanical Perspective

* The Need for Massive Scale for Carbon Storage

 Saline Aquifers and Induced Seismicity

e Basal Aquifers and the Critically-Stressed Crust
e Lessons from Induced Seismicity in Oklahoma

* Lessons from Induced Seismicity in the Delaware Basin

* Depleted Oil and Gas Reservoirs and Induced Seismicity
 How Poroelastic Stress Changes Limit Induced Seismicity
* How Past Production has Depleted CCS Reservoirs (Not today)

* Progress to Date



Weak Sands of the Gulf of Mexico

The Good News:
* Weakly-Cemented Sands are Not Likely to Produce Earthquakes
 Both Depleted Reservoirs and Saline Aquifers are Relatively Well Characterized




Weak Sands of the Gulf of Mexico

Requires Further Study:
 How Has Production Has Affected Depleted Oil and Gas Reservoirs?
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Global CCS Projects 2020

Source: Global CCS Institute:
https://www.globalccsinstitute.com/wp-
content/uploads/2021/03/Global-Status-of-CCS-Report-English.pdf
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Topics — Massive Scale CCS from a Geomechanical Perspective
Over the Next Decade, if You Remember Nothing Else

* The Need for Massive Scale for Carbon Storage

e Saline Aquifers and Induced Seismicity

* Basal Aquifers and the Critically-Stressed Crust
* Lessons from Induced Seismicity in Oklahoma

* Lessons from Induced Seismicity in the Delaware Basin

* Depleted Oil and Gas Reservoirs and Induced Seismicity
* How Poroelastic Stress Changes Limit Induced Seismicity
 How Past Production has Depleted CCS Reservoirs (Not today)

* Progress to Date



Topics — Massive Scale CCS from a Geomechanical Perspective
Over the Next Decade, if You Remember Nothing Else

* The Need for Massive Scale for Carbon Storage

e Saline Aquifers and Induced Seismicity —
* Basal Aquifers and the Critically-Stressed Crust

Don’t Do This !

* Lessons from Induced Seismicity in Oklahoma Do This !

* Lessons from Induced Seismicity in the Delaware Basin _—

* Depleted Oil and Gas Reservoirs and Induced Seismicity
* How Poroelastic Stress Changes Limit Induced Seismicity
 How Past Production has Depleted CCS Reservoirs (Not today)

* Progress to Date
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