Potential for a CO₂ Economy in the Four Corners Moving the Focus from Project to Portfolio

George Guthrie, Richard Middleton, Rajesh Pawar Los Alamos National Laboratory

26th Annual CO₂ Conference Presented Both Live and Virtually

Presented at the 26th Annual CO₂ Conference Tuesday - Thursday Dec 8th-10th, 2020

> Bush Convention Center Midland, Texas

We are exploring potential for a CO_2 -based economy in AZ-CO-NM-UT: Analysis of options, strategy in space/time. (Support: DOE Office of Fossil Energy)

Capturing (and handling) CO₂

• Ultimately from the atmosphere

CO₂ Capture

- Regional point source opportunities (size & distribution; feasibility of capture technology)
- > BECCS and other other bio-capture routes
- > Direct air capture (plus renewable source)

Overall Focus

- Phase I assessment
- Regional perspective
 - Unique sources; unique options for storage/use; geographic factors
- Potential regional impact
 - Size/scale of options; economics; etc.

Storage Infrastructure

CO₂-EOR, storage; economics (e.g., 45Q, size of prize), other subsurface uses (e.g., geothermal)

Utilizing (and storing) CO₂

Sustainable markets

> Pipeline/transport infrastructure to enable

Use/Re-use

- > Vertical agriculture
- > Synthesis of fuels, chemicals, plastics, etc.
- > Enabling hydrogen storage
- > Potential role of fugitive methane

Water Management

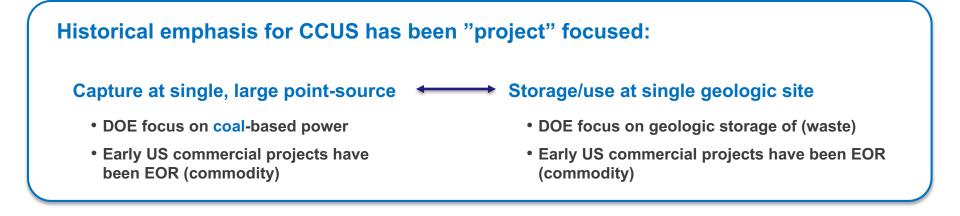
> Produced brines (desal, water as a product/resource, etc.)

Recovery of Critical Materials (e.g., REEs)

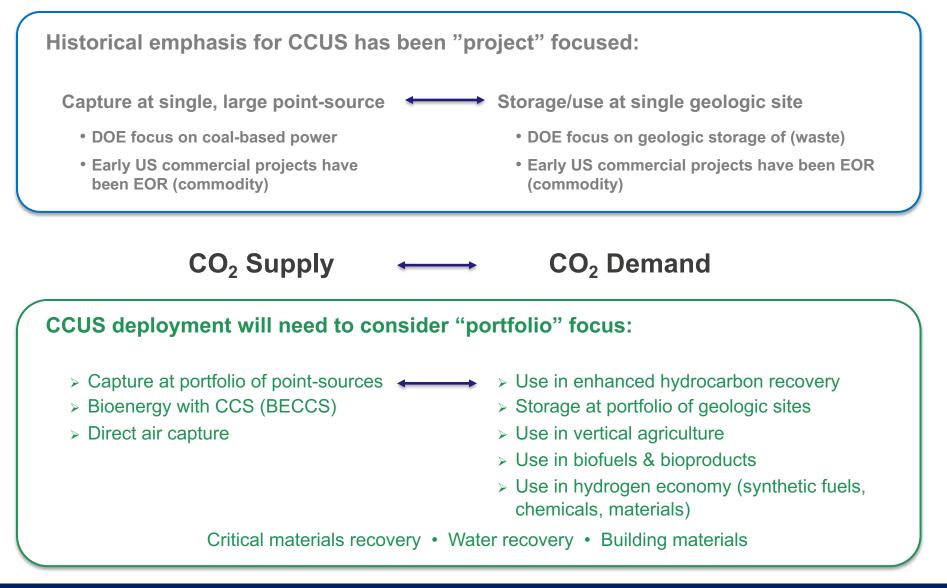
Coal-related materials, ultramafics used for mineralization, produced waters, etc.

CO₂ Supply Capturing and Handling

- Chris Russell, Joel Kress (CO₂ capture, CCSI)
- Manvendra Dubey (fugitive methane; direct air capture)
- **Rajinder Singh** (CO₂ capture membranes; water desal)
- Richard Middleton (pipeline infrastructure; source/sink analysis)
- Ross Beattie, Dom Peterson, Jackie Kiplinger, George Goff (critical materials recovery)
- Robert Currier (water desal)
- George Guthrie (CCUS overall)


CO₂ Demand Utilizing and Storing

 Bailian Chen, Rajesh Pawar, Hari Viswanathan
(aubourface utilization % storage)


(subsurface utilization & storage)

- Babs Marrone (algae, biofuels, plastics)
- John Gordon (fuels; feedstocks; plastics; coupling with H₂ production)
- **Bill Carey** (CO₂ mineralization)
- Discussions with various CCUS industry leaders are contributing key insights for specific topical areas.

CO₂ capture is a recognized need to address climate change, yet after two decades of R&D, it has yet to be deployed broadly.

Deployment of CCUS requires economic considerations including the need for portfolios of supply-demand and treating CO_2 as a commodity.

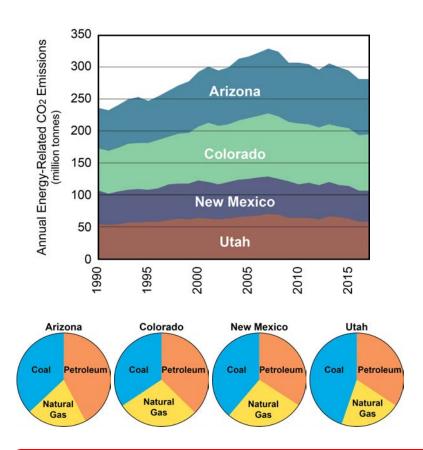
Our current focus on the potential for a CO_2 -based economy grew out of our independent assessment of the proposed retrofit of SJGS.

Preliminary Assessment Of Post-combustion Capture Of Carbon Dioxide At The San Juan Generating Station

An Independent Assessment of a Pre-feasibility Study Conducted by Sargent & Lundy for Enchant Energy

12 December 2019 Los Alamos National Laboratory Los Alamos, New Mexico 87545

Assessment targeted two overarching questions:


- Was the proposed retrofit of two units at the San Juan Generating Station using amine-based capture technically feasible?
- Were the projections of 90% capture of CO₂ from the processed flue-gas reasonable?

Our conclusion for both questions: Yes.

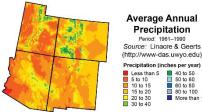
- Noted that the amount of CO₂ captured would depend on CO₂ demand.
- Noted the potential for developing various options for CO₂ demand within the Four Corners region.

Getting to Carbon Neutral with a New Economy in the Four Corners: Building a \$30–50B/yr economy while going from 300 Mt/yr CO₂ to 0.

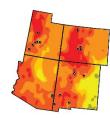
Each year, the four states emit ~300 Mt of energy-related CO₂.

 CO_2 capture is recognized by IPCC as integral to climate mitigation; it can be accelerated by demand for CO_2 .

Capturing \longleftrightarrow Utilizing & Storing (Supply) (Demand)


- Limiting demand can limit supply (lesson from early integrated projects)
- Increasing demand can incentivize supply, and vice versa (corollary implication)
- Fostering an "economy"—i.e., a portfolio of supply/demand—can lead to new jobs, growth, etc.

Current Economy: ~\$1B/yr in CO₂ sales in Four Corners, resulting in ~\$5B/yr oil sales outside Four Corners. *Potential Future Economy:* With sales <u>and</u> use in the region, a 300 MtCO₂/yr economy would total \$30–50B/yr,

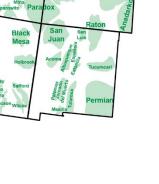

The Four-Corners states share attributes that can lead to a common strategy for a new economy with CO_2 as a backbone.

Global Horizontal Solar Irradiance Period: 1961-1990

Period: 1961-1990

Source: Roberts (2018) (https://www.nrel.gov)

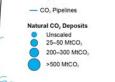
60 to 80


80 to 100

More than 100

Geothermal Resource Potential Source: Roberts (2009) (https://www.nrel.gov) Favorability of Deep Enhanced Geothermal Systems Most Favorable

> Least Favorable N/A (T<150°C @ 10-km depth)</p> Identified Hydrothermal Site (>90°C)



U.S. Domestic Sovereign Nations

Sources: BIA, 2018; Census, 2018; USGS, 2018, ESRI, 2018 (https://biamaps.doi.gov)

I and Areas of Federally Recognized Tribes

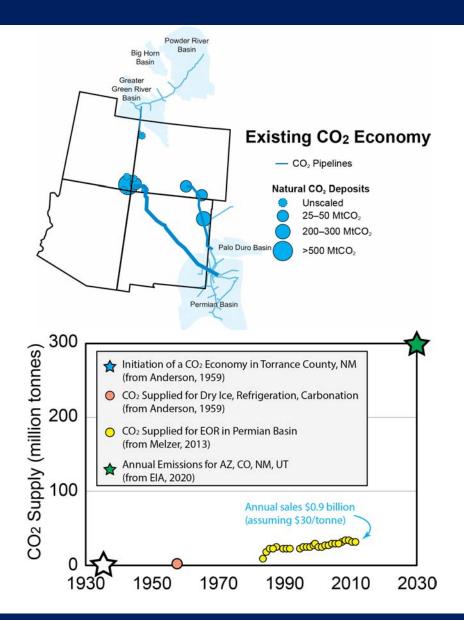
Existing CO₂ Economy

Geology

- Colorado Plateau—rich in fossil resources (oil, gas, coal) and in large natural CO₂ reservoirs
- > Other major sedimentary basins with established fossil industries and with CO₂ extraction for EOR
- > High subsurface heat flow—geothermal potential

Geography

- Dominated by arid ecosystems—water is a major focus; wildfire concerns
- > High annual solar irradiance—solar potential
- Multiple sovereign nations


Economy

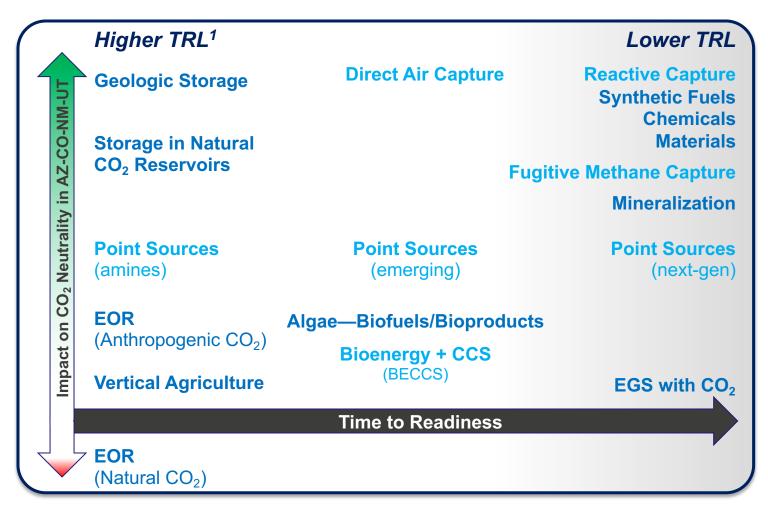
- > Existing CO_2 based economy—oldest globally (~\$0.9B/yr CO₂ sales)
- > Oil/gas extraction—AZ, CO, NM, UT (~\$20B/yr from conventional & shale)¹ (~\$11B/yr from conventional, shale, and coal-bed methane)¹
- Mining—coal (AZ, CO, NM, UT), metals (AZ) (AZ coal mine in Black Mesa basin closed 2019) (~\$1M/yr from coal)¹

Based on data from eia.doe.gov

Los Alamos National Laboratory

CO₂ enhanced oil recovery spurred the development of infrastructure to support a 30 Mt/yr supply (to resources outside of the region).

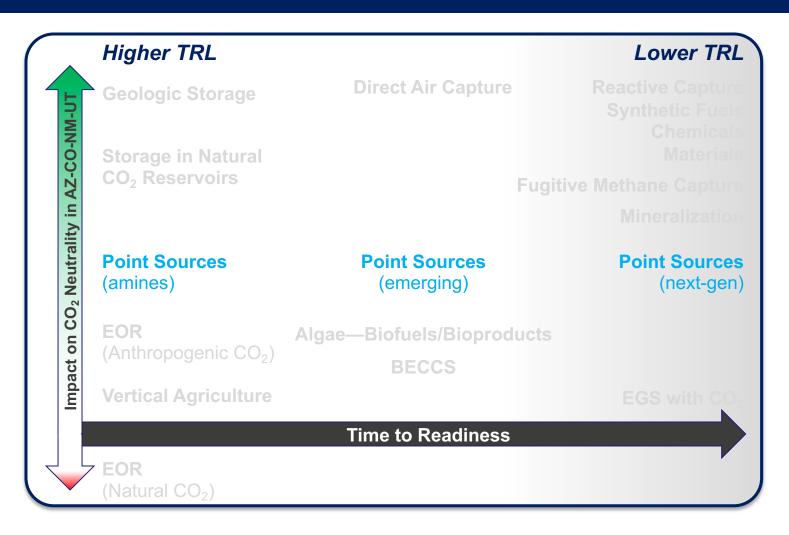
CO₂ supply is currently dominated by mining of natural deposits


- Rate of CO₂ supply¹ is ~30 million t/yr; represents ~\$1 billion per year at \$30–40/t
- > Relatively stable over last 30 years
- Significant known regional resources; individual deposits represent multibilliondollar assets

Using anthropogenic CO₂ for current EOR market² would move the region 10% of the way to carbon neutral.

Developing CO₂ demand within the region would increase the economic impact by 5x.

- > Driver could help build infrastructure needed to support regional demand.
- Based on sales to Permian Basin; sales to Wyoming EOR <5% of Permian sales
- ² Use of anthropogenic CO₂ for EOR can lower carbon footprint of oil by 10–15% relative to conventional oil production. It does not impact oil demand significantly.

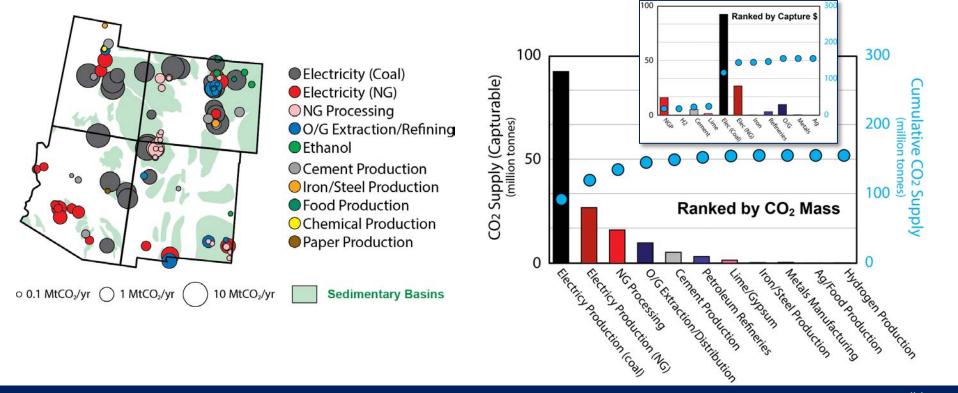

Our preliminary assessment of the technology Landscape for Four Corners targets a range of near-, mid-, and long-term options.

• Higher TRL could be implemented now dependent on infrastructure & economics. • Lower TRL requires additional R&D needs range from innovation to scale up.

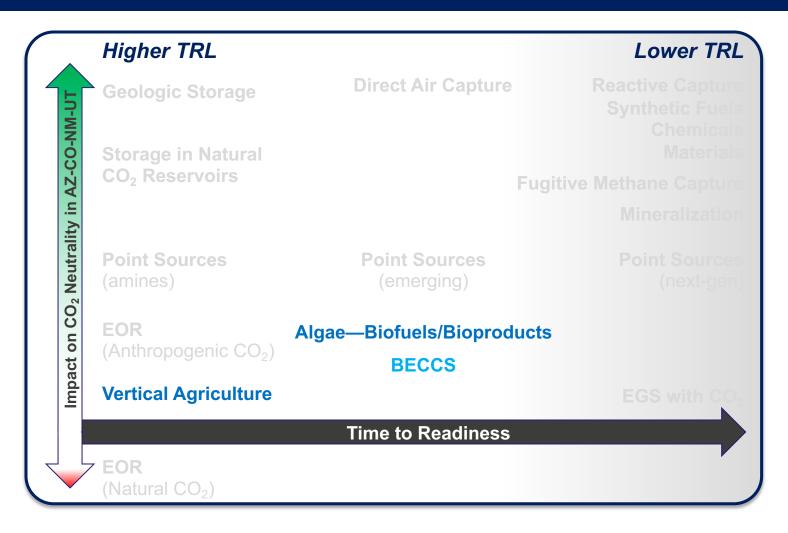
¹ TRL—Technology Readiness Level

Technology for capture at large sources of higher concentration CO_2 spans a range in maturation, from new innovations to ready-to-deploy.

• Higher TRL could be implemented now dependent on infrastructure & economics. • Lower TRL requires additional R&D needs range from innovation to scale up.


Point sources across the region represent prime targets for near- to mid-term capture and could enable build-out of regional infrastructure.

Point sources of CO₂ are distributed across the four states


- Particular concentrations exist at Four Corners & in geologic basins.
- Each source type poses an R&D target for capture technology.

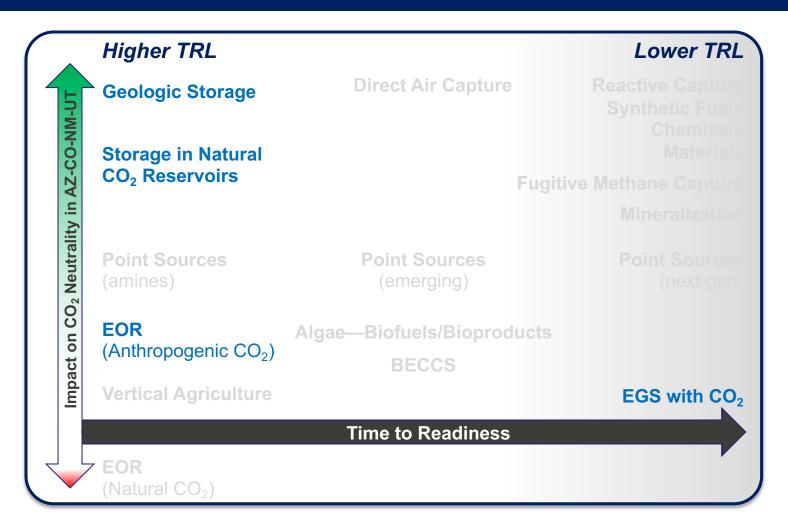
Capture of point sources could achieve 30–50% of carbon neutrality

- Coal-based power is largest set of point sources; potential for coupling to BECCS?
- Natural-gas based power is has potential for ~10% of carbon neutrality.

Biomass production offers unique regional opportunities.

• Higher TRL could be implemented now dependent on infrastructure & economics. Lower TRL requires additional R&D needs range from innovation to scale up.

Biomass production offers near-term potential for CO₂ demand.

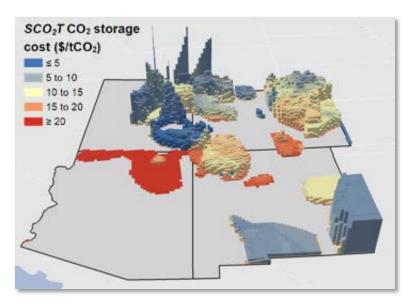

Advanced Agricultural for Arid Regions

- CO₂ Demand: Captured CO₂ could replace the "bottled" CO₂ currently used in greenhouses to enhance plant growth.
- > *Size:* TBD. Agriculture is a large industry in the region.
- *Technology:* Vertical/aquaponics greenhouses are relatively mature technologies. CO₂ added to the greenhouse atmosphere enhances growth.
- Economics: Considerations include placement of facilities to reduce transportation costs, need for local heat source to regulate greenhouse temperature (low T geothermal?), purity requirements if used for food crops, water.

Algae for Biofuel, Biomass, Bioproducts

- CO₂ Demand: Open ponds sparged with CO₂ to increase growth and to maintain pH. Some algae strains can grow in saline or brackish waters unsuitable for agriculture.
- > Size: TBD. Global algae industry is about \$3.5B.
- *Technology:* Increased biomass production for biofuel or biopower, and recycling of algae nutrients as fertilizer, and other bioproducts, such as bioplastics.
- > Economics: Considerations include placement of facilities.
- Additional Factors: Algae can be utilized for animal and fish feed, or food supplements—purity requirements for CO₂.

Utilization of subsurface resources offers significant opportunity in the Four Corners region.


• Higher TRL could be implemented now dependent on infrastructure & economics. • Lower TRL requires additional R&D needs range from innovation to scale up.

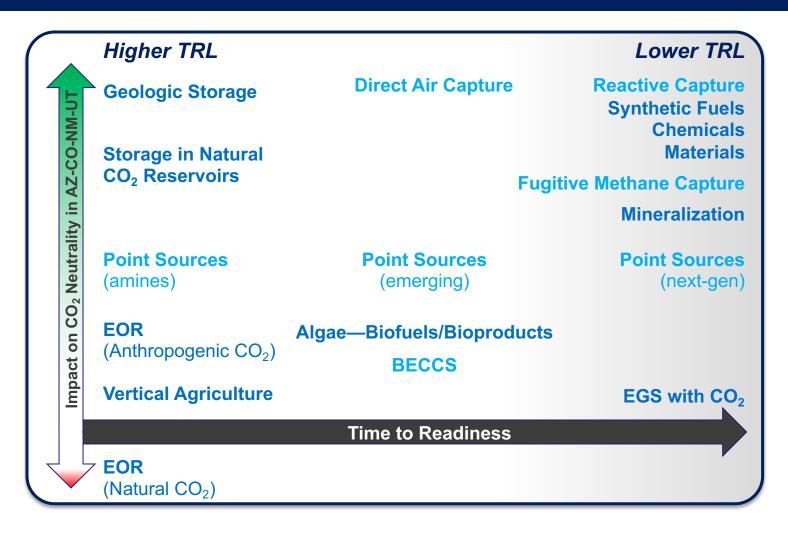
Enhanced hydrocarbon recovery drive infrastructure development that could be subsequently exploited by other subsurface options.

Deep Saline Formations (assessed for geologic storage)

Sedimentary Basins

Enhanced Hydrocarbon Recovery

- > CO₂ Demand: Potential for CO₂ use in EOR; EGR & ECBM?
- > Size: TBD.
- *Technology:* Use of anthropogenic CO₂ can reduce life cycle carbon footprint of produced hydrocarbon. Subsequent stacked storage can lower carbon footprint further and could mitigate risk due to variation in oil demand. Co-recovery of produced water could be significant; low T heat recovery?
- > *Economics:* Tied to price of oil; 45Q tax credit may apply.


Geologic Storage

- > CO₂ Demand: Storage via 45Q credit; large resource.
- > *Size:* TBD. Ongoing work by DOE regional partnership(s).
- > Technology: EOR-derivative; could entail brine co-production.
- Economics: 45Q tax credit. Infrastructure development for EOR and GS could be synergistic. Potential for co-recovery of water; critical-materials recovery?
- Future considerations: Existing natural deposits could be "pore-space" assets in the future.

Enhanced Geothermal Systems

- > CO_2 Demand: Use of CO_2 as working fluid in heat recovery.
- > Size: TBD. High heat flow in region.
- *Technology:* EGS similar to production from shale reservoirs; use of CO₂ as working fluid is at conceptual stage.

Our preliminary assessment of the technology Landscape for Four Corners targets a range of near-, mid-, and long-term options.

• Higher TRL could be implemented now dependent on infrastructure & economics. • Lower TRL requires additional R&D needs range from innovation to scale up.

Associated resources provide additional drivers for a CO₂ economy economic and otherwise.

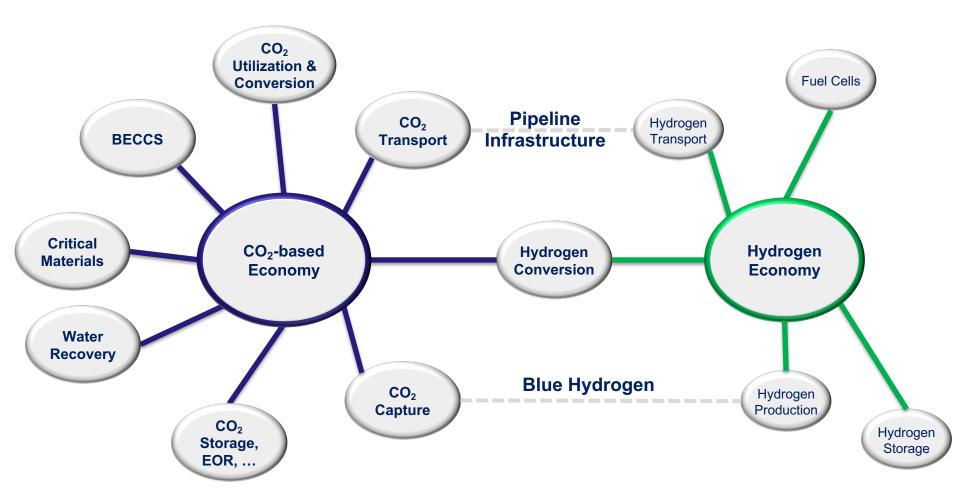
Draft Critical Mineral List—Summary of Methodology and Background Information—U.S. Geological Survey Technical Input Document in Response to Secretarial Order No. 3359

Open-File Report 2018–1021 U.S. Department of the Interior U.S. Geological Survey

Aluminum, Antimony, Arsenic, Barite, Beryllium, Bismuth, Cesium/Rubidium, **Chromium**, Cobalt, Fluorspar, Gallium, Germanium, Graphite, **Helium**, Indium, **Lithium**, Magnesium, Manganese, **Platinum group metals**, Potash, **Rare earth elements**, Rhenium, Scandium, Strontium, Tantalum, Tellurium, Tin, Titanium, Tungsten, Uranium, Vanadium, Zirconium/Hafnium

Recovery of Critical Materials (Metals)

- CO₂ Demand: Indirect tie to increasing CO₂ demand through co-production during EOR & co-production with associated mining operations (coal; CO₂ mineralization).
- Size: TBD. Ongoing work by DOE targeting REEs in coalrelated materials; REEs, Cr, & platinum-group enriched in resources for CO₂ mineralization; lithium in produced waters?
- > *Technology:* Range of maturation from concept to pilot.
- > Economics: TBD


Recovery of Critical Materials (Helium)

- CO₂ Demand: Indirect tie to increasing CO₂ economy through co-production associated with natural production of CO₂ and/or natural gas.
- > Size: TBD. Reservoirs can contain up to 7% He.
- > *Technology:* Co-recovery during gas processing.

Recovery of Water

- CO₂ Demand: Indirect tie to increasing CO₂ demand through co-production in geologic storage and EOR.
- > Size: TBD.
- > *Technology:* Variety of existing and emerging technologies.
- *Economics:* The economics tied to need for alternative resources for potable water, cooling/process water for power & industry, agriculture.

Potential future energy economies are synergistic with a CO₂ economy providing opportunities for leveraging infrastructure, etc.

The Four-Corners states share attributes that can lead to a new economy based on CO₂ as a backbone \rightarrow while driving CO₂ neutrality.

350

300

250

200

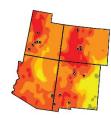
150

100

Е.

Neutrality

²0³


ч

Impact

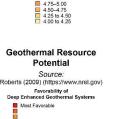
Average Annual Precipitation Source: Linacre & Geerts (http://www-das.uwyo.edu) Precipitation (inches per year) Less than 5 40 to 50 5 to 10 50 to 60 10 to 15 15 to 20 20 to 30 30 to 40

Global Horizontal Solar Irradiance Period: 1961-1990

60 to 80

80 to 100

More than 100


Period: 1961-1990

Source: Roberts (2018) (https://www.nrel.gov) GHI (kWh/m²/d)

≥5.755.50-5.75

5 25-5 50

5.00-5.25

Least Favorable N/A (T<150°C @ 10-km depth) Identified Hydrothermal Site (>90°C)

U.S. Domestic Sovereign Nations

Sources: BIA, 2018; Census, 2018; USGS, 2018, ESRI, 2018 (https://biamaps.doi.gov)

I and Areas of Federally Recognized Tribes

Existing CO₂ Economy

- CO, Pipelines Natural CO, Deposits Unscaled 25-50 MtCO.

Annual Energy-Related CO₂ Emissions (million tonnes) 50 Utah 0 066 995 2005 2010 2000 **Higher TRL Direct Air Capture Reactive Capture** Geologic Storage AZ-CO

Synthetic Fuels Chemicals Storage in Natural **Materials** CO₂ Reservoirs **Fugitive Methane Capture** Mineralization **Point Sources Point Sources Point Sources** (amines) (emerging) (next-gen) EOR Algae—Biofuels/Bioproducts (Anthropogenic CO₂) BECCS **Vertical Agriculture** EGS with CO₂ **Time to Readiness** EOR (Natural CO₂)

Arizona

Colorado

New Mexico

2015

Lower TRL