

Regional Carbon Capture and Transport Opportunities for Storage in Texas, the Permian Basin, and the Gulf

December 9, 2020

Elizabeth Abramson Research Analyst Great Plains Institute

GREAT PLAINS Better Energy. INSTITUTE Better World.

- Prioritize key carbon capture and CO2 pipeline project opportunities revealed in modeling
- Determine cost gaps, where applicable, for priority projects after accounting for federal 45Q tax credit
- Identify state policies to help close cost gaps
- Engage stakeholders, policymakers and media to marshal support for projects to meet 45Q timeline of beginning construction by end of 2023
- Prepare for 2020-21 state legislative sessions

Regional CO₂ Transport Infrastructure Study

Study Components

- 1. Identify near-term opportunities for CO₂ capture retrofit
- 2. Locate areas of CO₂ storage and use
- Model optimized CO₂ transport infrastructure to maximize capture and storage

Primary Partners:

Initial CO₂ Corridor Scoping

Analytical Report

Published June 30, 2020

WHITEPAPER ON REGIONAL INFRASTRUCTURE FOR MIDCENTURY DECARBONIZATION

Authored by Elizabeth Abramson and Dane McFarlane Great Plains Institute Jeff Brown University of Wyoming JUNE 2020 BEGIONAL GREAT PLAINS INSTITUTE

As outlined in the metho this analysis and power I storage opp and existing CO ₂ capture scale neede	or Filter port Infra in the sect oblogical is identified unities for acities all ortunities is EOR oper s and stora d for US d	istructure ons above, i appendix of t near- and mi capture at its ng with likely ng with likely nd deep saline ations. To mi ge and appri scarbonizate	for Econe and detailer this paper, edium- idustrial y geologic e formation aximize pach the on targets	d and reg mir coi Lat s ide net fac and	de Deploy di internation jonal CO, ti simize invesi its, and lan opriatory's 5 notify optimi works that alties to sto alysis, result	rment nal tempera ransport int tment requ d use. Los imOCS mo imOCS mo ingional s deliver CO, rage locato tog in Figur	ture target rastructure inements, t Alamos Na cale transp trom capt ms identific to 8.	ts, share swill transpor stonal and to sort ture ad by th
		231	M ,	6 8	-	in l		
Table 7. M				dameter		These of an	•	
Table 7. M					A CHARLES	These of an	·	Not and a second

The difference in build-out of CO, transport final difference in build-out of CO, transport finalizations in the https://coil.formithy formation of the https://coil.formithy transport.coil.formithy.coil.formithy transport.coil.formithy.coil.formithy acade CO, transport network well are plane capacitor and the transport network well as of the creation of the coil of the transport in the coil SO per first transport network well as of the creation in the cointer and well her velocities of the coil of the coil of the coil of the coil of the coil of the coil of the coil of the coil of the coil and the coil of the coil of the coil of the coil and the coil of the coil of the coil of the coil and the coil of the coil of the coil of the coil of the transport finalisticular well and the coil of the transport finalisticular weak of the coil of the transport of the transport in finalisticular of the coil of the coil of CO, copies and difference of the coil of the coil of CO, copies and difference of herabition of the data well as the coil of the coil of the transport finalisticular weak of the coil of the coil of the additional inflation coil a specific the coil of the coil of the additional inflation coil a specific the coil of the c	Near-term planning and coordination of regional- scale infrastructure tile carabolistructure industrial and power sectors while crating a marketplace of the sector of the sectors will require. Economy-wide deployment of carbon capture and storage will help achieve net-sector on registive carbon emissions in the US.
coordinated planning.	to direct air capture facilities, that today seem relatively expensive.
This study has shown clear opportunities for wide-spread capture at low costs throughout the Midwest, Midcontinent, Rockles, Northern Plains, Gulf Coast, and Texas.	Developing solutions in the near term to address logistical issues such as inter-state OD, transportation considers, interconnected piteline networks operated or shared by multiple private entities, and state and federal support for hume-proofing pipeline organity through "support-size" will desire allow
If the US is to significantly decarborize the industrial and power sectors, as well as create a marketplace that allows for direct air capture tablies to help active net-zero or negative carbon entissions, then planning and coordination must occur in the near term to been builden externations.	costs as well as land use and environmental impact of CO, transport infrastructure. Achieving national goals will require broad scale coordinated vision and action. This analysis provides a framework for coordinated regional infrastructure that can help define that vision.

Download the paper at:

carboncaptureready.org/analysis

CO₂ Capture Opportunities: Industrial and Power Facilities

Section 45Q Tax Credit for CO₂ Storage

Geologic Saline:\$50 / tonEOR Storage:\$35 / ton

Minimum Capture Thresholds

Industrial Facility: Power Plants:

100 thousand tons CO₂ 500 thousand tons CO₂

Near- and Medium-Term Screening Criteria:

- 45Q Eligibility
- Operational patterns
- Expected life
- Right-size capture equipment to specific units within each facility

Estimated Cost of Capture per Industry for Near-Term Facilities in Study Area

Industry	# of Facilities	Optimized Capture (mmt/year)	Average Estimated Cost \$/ton
Ethanol	150	50.6	\$17
Cement	45	32.7	\$56
Refineries	38	26.5	\$56
Steel	6	14.6	\$59
Hydrogen	34	14.4	\$44
Gas Processing	20	4.5	\$14
Petrochemicals	2	1.7	\$59
Ammonia	3	0.9	\$17
Chemicals	2	0.7	\$30
Coal Power Plant	58	143.4	\$56
Gas Power Plant	60	67.9	\$57
Grand Total	418	357.8	\$39

Source: Jeff Brown, 2019

45Q-Qualifying Power and Industrial Sources of CO2 in Texas

Industry	# of 45Q Qualifying Facilities	45Q Qualifying Emissions (million metric tons CO2)	Total # of Facilities in Texas	Total Facility Emissions in Texas (million metric tons CO2)
Coal Power Plant	20	127.4	20	127.4
Gas Power Plant	56	100.6	111	109
Refineries	25	61.9	34	78
Petrochemicals	14	10.9	31	25.5
Gas Processing	12	4.9	264	21
Hydrogen	16	12.5	16	12.5
Cement	16	10.4	16	10.4
Chemicals	-	-	52	7.4
Metal & Minerals	2	0.4	97	4.8
Ethanol	4	1.2	4	1.2
Ammonia	1	0.7	1	0.7
Pulp & Paper	-	-	5	0.7
Steel	1	0.2	5	0.6
Grand Total	167	331.1 MMT	656	399.2 MMT

MMT: million metric tons CO2

Source: EPA GHGRP 2018

Industry	CO2 Captured Target (million metric tons CO2)	Total Texas Facility CO2 Emissions (million metric tons CO2)	Facility Capture Rate	Share of Industry Emissions Captured
Ammonia	-	0.7	-	-
Cement	7.7	10.4	83%	74%
Chemicals	-	7.4	-	-
Coal Power Plant	24.0	127.4	29%	19%
Ethanol	1.0	1.2	287%	89%
Gas Power Plant	31.5	109.0	48%	29%
Gas Processing	1.1	21.0	43%	5%
Hydrogen	5.0	12.5	54%	40%
Metals & Minerals	-	4.8	-	-
Petrochemicals	1.7	25.5	65%	7%
Pulp & Paper	0.0	0.7		0%
Refineries	14.8	78.0	25%	19%
Steel	-	0.6	-	-
Grand Total	87 MMT	399.2 MMT	N/A	22%

Source: EPA GHGRP 2018; GPI 2019

Near- and Medium-Term Opportunities

Economically feasible with today's technology, 45Q tax credit, and assumed \$10-\$15 / ton pipeline transport tariff, for sale to EOR at \$20 / ton.

Source: Regional Carbon Capture Deployment Initiative, GPI, and Jeff Brown. 2019.

45Q-Qualifying Power and Industrial Sources of CO2 in Louisiana

Industry	# of 45Q Qualifying Facilities	45Q Qualifying Emissions (million metric tons CO2)	Total # of Facilities in Louisiana	Total Facility Emissions in Louisiana (million metric tons CO2)
Ammonia	4	8.9	4	8.9
Chemicals	1	0.3	31	3.8
Coal Power Plant	4	18.5	4	18.5
Gas Power Plant	12	23.2	26	26.0
Gas Processing	4	0.8	227	11.9
Hydrogen	10	7.4	13	7.6
Metals & Minerals	-	-	25	2.4
Other Power Plant	-	-	1	2.1
Petrochemicals	12	10.2	20	14.2
Pulp & Paper	2	1.4	9	2.8
Refineries	11	30.7	15	32.1
Steel	1	0.1	1	0.1
Waste	-	-	25	-
Grand Total	61	101.4 MMT	401	130.5 MMT

MMT: million metric tons CO2

Source: EPA GHGRP 2018

Louisiana

Identified near- and medium-term capture opportunities

Industry	CO2 Captured Target (million metric tons CO2)	Total Louisiana Facility CO2 Emissions (million metric tons CO2)	Share of Industry Emissions Captured
Ammonia	0.5	8.9	5.5%
Chemicals	-	3.8	-
Coal Power Plant	3.2	18.5	17.3%
Gas Power Plant	8.0	26.0	30.8%
Gas Processing	0.5	11.9	4.0%
Hydrogen	4.2	7.6	55.1%
Metals & Minerals	-	2.4	-
Other Power Plant	-	2.1	-
Petrochemicals	-	14.2	-
Pulp & Paper	0.0	2.8	-
Refineries	7.0	32.1	21.7%
Steel	-	0.1	-
Waste	-	0.0	-
Grand Total	23.3 MMT	130.5 MMT	18%

Source: EPA GHGRP 2018; GPI 2019

Near- and Medium-Term Opportunities

Economically feasible with today's technology, 45Q tax credit, and assumed \$10-\$15 / ton pipeline transport tariff, for sale to EOR at \$20 / ton.

Source: Regional Carbon Capture Deployment Initiative, GPI, and Jeff Brown. 2019.

CO₂ Storage in Saline Formations & Petroleum Basins

Saline data via The Sequestration of CO2 Tool (SCO2T)

Ų INDIANA UNIVERSITY

Figure authored by Elizabeth Abramson, GPI, March 2020

CO₂ Storage in Saline Formations & Petroleum Basins

US Saline Storage Potential **8.3 to 21.6** *trillion* **metric tons CO2** U.S. DOE, U.S. Carbon Storage Atlas, 2014

1.8 trillion metric tons at less than \$5 / ton storage cost

[Conservative estimate based on *partial* coverage of data. National estimate forthcoming.] Los Alamos National Lab and Indiana Geological Survey, SCO2T Model, 2020

Figure authored by Elizabeth Abramson, GPI, March 2020

Saline data via The Sequestration of CO2 Tool (SCO2T)

Los Alamos
NATIONAL LABORATORY

U INDIANA UNIVERSITY

Near- and Medium-Term Scenario: Optimized transport network for CO₂ capture and storage under 45Q

Near- and Medium-Term Scenario: Optimized transport network for CO₂ capture and storage under 45Q

Shared CO₂ Transport Infrastructure: Beneficial Economies of Scale

Higher capacity achieves lower costs per ton

Cost to user/customer

Calculated with:

Investment by owner/operator

Shared CO₂ Transport Infrastructure: Beneficial Economies of Scale

Small feeder lines have a higher per-ton cost because they deliver less CO_2 .

Shared high-capacity transport segments achieve beneficial economies of scale.

Customers generally pay a transport tariff (1/ton) based on the route their CO₂ product takes through the transport network.

Near- and Medium-Term Scenario: Relative transport cost of network segments

Large trunk lines achieve best economies of scale and lowest per-ton transport cost.

Small-feeder lines to individual facilities require less capital but have higher perton cost.

Cost Pango	Length
COSt Kange	(miles)
Very Low	18,006
Low to Moderate	4,744
Moderate to High	6,960

Midcentury: Long-term Economy-Wide Deployment Expanded storage in saline formations and petroleum basins

Planning for Near-Term versus Long-term Economy-Wide Deployment

Economies of scale benefit higher capacity for CO_2 delivery

Regional infrastructure

can store more CO₂ at a lower cost

Long term planning results in more CO_2 stored, smaller land use, and lower marginal cost

Scenario	CO ₂ Stored	Land Use	Capital Investment	Project Labor Investment	Annual O&M Spending
Near- and Medium-Term	281 million metric tons	29,710 miles	\$16.6 billion	\$14.3 billion	\$252 million
Midcentury	669 million metric tons	29,922 miles	\$19.3 billion	\$15.3 billion	\$254 million
Midcentury scenario increase over Near- and Medium-Term scenario	x 2.38 more CO ₂ stored	+0.7%	16.3%	7.0%	0.8%

Transport Network Size for Near- and Medium-Term versus Midcentury Scenario

Near- and Medium-Term Scenario

Midcentury Scenario

Carbon Capture Ready Website

RDI Homepage

- State fact sheets ٠
- Jobs fact sheets •
- Analytical white paper ٠
- Policy briefs ٠
- Resources on carbon ٠ capture

GREAT PLAINS

INSTITUTE

REGIONAL JOBS AND ECONOMIC IMPACT CARBON OF CARBON CAPTURE DEPLOYMENT CAPTURE DEPLOYMENT Texas INITIATIVE

Texas has the opportunity to create an annual average of up to 17,860 project jobs over a 15-year period and 9,230 ongoing operations jobs through the deployment of carbon capture at 95 industrial and power facilities. The retrofit of equipment at these facilities has the potential to capture nearly 161 million metric tons of carbon dioxide (CO2) per year. Along with the development of CO₂ transport infrastructure, this would generate up to over \$59 billion in private investment.

CREATING JOBS & CAPTURING CARBON

Carbon capture is essential to meeting mid-century emissions reduction goals while retaining and growing a domestic base of high-wage energy, industrial, and manufacturing jobs, Carbon capture retrofits require facilities to be outfitted with capture technologies such as amine scrubbers to remove CO2 from exhaust gas and compressors to make the CO2 transport-ready, that are dependent upon the type of industrial plant and vary across industries and facilities. There are jobs associated with the equipment, materials (e.g. cement and steel), engineering, and labor required to install the capture technology, as well as ongoing jobs to operate and maintain the retrofits. These are referred to as project jobs and operations jobs. Rhodium Group performed an economic analysis based on the

Regional Carbon Capture Deployment Initiative's near- and medium-term capture potential scenario.1 The Rhodium analysis quantifies the economic impact and employment opportunities of carbon capture retrofit projects by deploying state-specific data in the IMPLAN economic model. The analytical results measure the impact of project investment and operation costs through expected annual jobs. Average annual project jobs were calculated assuming deployment of all projects within the 15year period from 2021-2035. The jobs reported are in-state jobs, directly associated with carbon capture retrofits. They do not include other jobs at the facilities, nor indirect and induced jobs.

CARBON CAPTURE JOBS AND ECONOMIC IMPACT SUMMARY

Industry	Number of Facilities	Total Capture Target Metric Tons	Private Investment Million Dollars	Annual Average Project Jobs 2021-2035	Annual Operations Jobs
Cement	-11	8,000,000	\$1,200 - \$1,800	350 - 520	310 - 430
Coal Power	11	70,000,000	\$14,000 - \$20,000	3,870 - 5,800	2,360 - 3,540
Ethanol	4	1,000,000	\$60 - \$90	15 - 25	20 - 30
Gas Power	28	53,000,000	\$15,000 - \$25,000	4,400 - 6,600	2,570 - 3,850
Gas Processing	6	900,000	\$70 - \$100	20 - 25	20 - 30
Hydrogen	14	9,000,000	\$900 - \$1,300	260 - 380	270 - 370
Petrochemicals	2	2,000,000	\$500 - \$700	150 - 220	110 - 160
Refineries	19	17,000,000	\$2,600 - \$3,900	960 - 1,440	590 - 820
CO ₂ Transport Infrastructure			\$7,000,000,000	2,850	
Rhodium Group analytical res	ults: rhg.com	/research/	Fo	r more information, visit	carboncaptureready.or

TOTAL JOBS POTENTIAL Toject Jobs Operations Infrastructure Jobs Jobs 15.010 9.230 2.850 ANNUAL PROJECT AND 1 bar represents 1 industry **OPERATIONS JOBS** eroportional to CO₂ coptured (\$40 1,500 Refinerie

Cemer

Hydroe

Petro-

Gas

chemical

not proportion to CO; captured This figure depicts the low and high range of estimated an al average proje This ingler veryous ties ow and region angle of estimate a more and a provide the pibs, framework infrastructure jobs, and ongoing operations jobs that could be created through carbon capture retrofits at industrial and power facilities in Texas. The potential amount of CO₂ captured and the number of potential near-or medium letric capture facilities in each industry are shown on the right.

1 bracke

t facility

Analysis - Carbon	Capture Ready × +					-	u	1
· > C ·	https://carboncaptureready.bet	terenergy.org/analysis/				Q \$		
GREAT I	PLAINS Better Energy. ITE Better Workt.			Who We Are	Our Work	Become	Donor	
CARBON CAPTO	URE READY REGIONS A	INALYSIS RESOURCE	ES CONTACT					
		I Storage	Carbon Capt Infrastructur Midcentury D This report provide the analytical meth potential capture fr Western and Midwa as primary modelin conclusions on reg capture, transport, opportunities. Download the repo	ure and Storag re for Decarbonizatio s data sources, detai iodology, and identifi acilities throughout t isstern regions, as we g scenarios and ional CO2and storage ct below.	ge on Is es the II			
	Jobs and Econo Fact Sheets The Regional Deploymer released a series of sta potential jobs creation of carbon capture depl	omic Growth ent initiative has te fact sheets on and economic impact oyment, based on	And And Forder States of the states of the s	The second secon				
	collaborative analysis to The Rhodium analysis of economic impact and e opportunities of carbo- projects by deploying s the IMPLAN economic of Download each state f Midcontinent Region	y Rhodium Group. quantifies the imployment n capture retrofit itate-specific data in model. fact sheet below:						
	Arkansas	Louisiana	Montana	Oklahoma				

Nobraska

New Mexico

Minnesota

Missour

Illinois

Toyas

Utah

carboncaptureready.org

Elizabeth Abramson Research Analyst Great Plains Institute eabramson@gpisd.net

GREAT PLAINS Bett INSTITUTE Bett

Better Energy. Better World.