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Gulf of Mexico annual oil production

2
Kaiser and Narra, 2018, 

Shallow water 

(<400ft)

Deep water 
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Exploration
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GeoExPro, 2018



Too Much of a Good Thing? 
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What’s next?



A New Frontier: CCS

5
Ringrose and Meckel, 2019

Projected growth of storage, based on historical growth of hydrocarbons



Outline

• 2 questions

• What is the opportunity?

• How does it work?

• CO2-EOR

• Storage in depleted fields

• Saline storage

• Play elements

• Plays

• Running room in the GoM

• Conclusion
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Source: CO2 Emissions
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Point source of CO2 
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proportional to yearly 

emissions volume)
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CO2-EOR

• Long experience

• Familiar geology

• Well developed regulation

• Dual revenue stream
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Gulf Coast CO2-EOR Candidates

9Núñez-López et al, 2007

• > Min miscibility pressure 

(or >6000’ depth)

• >1mmbbl produced

• Waterflooded or good 

water drive



CO2-EOR Opportunity
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Núñez-López et al, 2007

4.7Bbbl recoverable oil

2.6Gt CO2 storage



Depleted Field Storage

• Familiar geology

• Proven reservoirs, seals and traps

• Chance to extend field life, delay decommissioning 

• Possibly re-use infrastructure

• Potential surprises with increasing subsurface pressure

• Immature regulation
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GoM Depleted Fields Studied
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Agartan et al, 2018



Storage Capacity of Studied Fields
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Agartan et al, 2018



Extrapolated Storage Capacity
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675 fields

3514 individual reservoirs

4.74Gt total capacity

Agartan et al, 2018



Saline Storage

• Greenfield development

• Familiar geology, but….where would you go to optimize storage?

• Not bound by current or historic hydrocarbon production

• New locations are possible

• New plays are possible

• Immature regulation

• The new frontier
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CO2 Density
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IEA, 2008
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Depth to Top of Overpressure
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Burke et al, 2012



Gulf of Mexico Storage Window

Gulf Coast Cross-section, Dallas to Deepwater

Bump, 2019

Window for CO2 storage defined by minimum pressure for supercritical CO2 (~1km) and top of overpressure



Trapping
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Buoyant trapping: Works for both hydrocarbons and CO2

But we don’t want the CO2 back—migration losses are viable storage

Bourg et al, 2015



Modelled CO2 Injection into Brine
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Chris MacMinn, Oxford University

100%0%

CO2 concentration



Reservoir
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Familiar tanks of sand—fantastic for hydrocarbons

Yperen et al, 2020

Meckel et al, 2019



Reservoir: For CO2 Heterogeneity is useful

22

273 min ~4.5 hrs6.5 min 2665 min ~ 44 hrs 3336 min~55 hrs

Meckel et al, 2019



Top Middle 

Miocene

Top Lower 

Miocene

~Base Miocene

Seal

(Olariu, 2020)

marine shale

North South

Classic marine shale seals but also baffled “confining systems”



Containment Systems

(Olariu, 2020)

A sufficiently baffled, tortuous flow path may be enough to permanently retain CO2



Southwest Hub
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Sharma et al, 2017

Triassic fluvial 

systems with 

discontinuous 

paleosols and 

overbank muds

Project to store Perth industrial emissions

Very limited onshore storage options, no regional seals



Seal: Southwest Hub Plume Model
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Sharma et al, 2017

• Injection at ~3200m depth

• 800kt/yr for 30 yrs, followed by 1000 yrs shut-in

• Plume is completely contained below 2400m

• For finite injection volumes, baffles can be enough 



Turtle Play: Great for Petroleum
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Peel, 2020Short migration, 

minimal losses

Sands encased in shale—likely high pressure and 

therefore high productivity from a few wellsBest reservoir at crest of structure—

thickest sands, highest perms, little 

crestal compartmentalization, low 

stratigraphic complexity

Mature source rock

Simple trap, single point of 

failure—simple to appraise



Turtle Play: Not so good for CCS
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Peel, 2020
Short migration, 

high likelihood of 

hydrocarbons

Sands encased in shale—rapid pressure 

build-up likely to limit CO2 injection

Best reservoir at crest of structure—

may be difficult to access pore 

space down-dip

Mature source rock



Salt Roller: Better for CCS
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Peel, 2020

Crestal region: 

• poor reservoir, poor connectivity

• high compartmentalization

• high stratigraphic complexity

Lots of ways to contain migrating CO2

Salt-floored basin, not connected to source:

Fewer wells, no competing uses

Best reservoir in synclines:

• high injectivity down-dip 

• Good aquifer connection 

mitigates pressure 

buildup

Lots of running room for injected CO2 

Stratigraphic complexity spreads 

plume, improve storage efficiency



Gulf Coast CCS
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New plays and new running room

Proven reservoirs and seals but many wells



Gulf Coast Saline Storage Capacity
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Input maps

Static capacity

125Gt in TX coastal Miocene section

30Gt in TX Miocene section in state waters

Treviño and Meckel, 2017



Gulf Coast CCS: Projects underway
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Comparing Storage Schemes
Storage 

Scheme

Key Considerations Gulf Coast 

Scale

CO2-EOR • Dual revenue stream, proven business model

• Use existing facilities

• Mature permitting/regulation

• Limited suitable locations

~5Gt?

Storage in 

depleted fields

• Brownfield redevelopment--new revenue stream, delayed 

decommissioning

• Proven seals and reservoirs

• Compact footprint to monitor

• Immature permitting/regulation

~10Gt?

Saline storage • Giant capacity, large running room

• Widely available

• Take advantage of new plays

• Immature permitting/regulation

100s of Gt
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Conclusion

• CCS has huge growth potential

• The Gulf Coast is a natural place to do it

• CO2-EOR

• Storage in depleted fields

• Saline storage

• Same principles as petroleum geology, but there are twists

• Increasing pressure

• Don’t want it back

• Focus on seal

• New plays and new drivers

• A new frontier!
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