Gulf Coast CCUS

Alexander P. Bump

Susan G. Hovorka

Vanesa Núñez-López

Tip A. Meckel

Mariana I. Olariu

Ramon H. Treviño

Gulf of Mexico annual oil production

Kaiser and Narra, 2018,

Exploration

GeoExPro, 2018

Too Much of a Good Thing?

What's next?

A New Frontier: CCS

Projected growth of storage, based on historical growth of hydrocarbons

Ringrose and Meckel, 2019

Outline

- 2 questions
 - What is the opportunity?
 - How does it work?
- CO2-EOR
- Storage in depleted fields
- Saline storage
 - Play elements
 - Plays
 - Running room in the GoM
- Conclusion

Source: CO₂ Emissions

Point source of CO2 emissions (size proportional to yearly emissions volume)

high

low

 \bigcirc

Heat map showing total volume of local yearly CO2 emissions

CO₂-EOR

- Long experience
- Familiar geology
- Well developed regulation
- Dual revenue stream

Gulf Coast CO₂-EOR Candidates

Bureau of

Economic

Geology

9

CO₂-EOR Opportunity

Fig. 6 Bar graph of miscible CO₂ EOR resource potential in the Gulf Coast

4.7Bbbl recoverable oil 2.6Gt CO₂ storage

10

Fig. 7 CO₂ sequestration capacity in miscible oil reservoirs along the Gulf Coast

Núñez-López et al, 2007

Depleted Field Storage

- Familiar geology
- Proven reservoirs, seals and traps
- Chance to extend field life, delay decommissioning
- Possibly re-use infrastructure
- Potential surprises with increasing subsurface pressure
- Immature regulation

GoM Depleted Fields Studied

Agartan et al, 2018

Storage Capacity of Studied Fields

Agartan et al, 2018

Extrapolated Storage Capacity

Agartan et al, 2018

Saline Storage

- Greenfield development
- Familiar geology, but....where would you go to optimize storage?
- Not bound by current or historic hydrocarbon production
 - New locations are possible
 - New plays are possible
- Immature regulation
- The new frontier

Depth to Top of Overpressure

Gulf of Mexico Storage Window

Gulf Coast Cross-section, Dallas to Deepwater

Window for CO_2 storage defined by minimum pressure for supercritical CO_2 (~1km) and top of overpressure

But we don't want the CO2 back-migration losses are viable storage

Modelled CO₂ Injection into Brine

Chris MacMinn, Oxford University

Familiar tanks of sand—fantastic for hydrocarbons

Reservoir: For CO₂ Heterogeneity is useful

273 min ~4.5 hrs

6.5 min GCCCC GUE COAST CARBON CENTER GUE COAST CARBON CENTER GUE COAST CARBON CENTER

2665 min ~ 44 hrs

3336 min~55 hrs Meckel et al, 2019 22

Classic marine shale seals but also baffled "confining systems"

Geology

GULF COAST CARBON CENTER

Containment Systems

A sufficiently baffled, tortuous flow path may be enough to permanently retain CO₂

Southwest Hub

Triassic fluvial systems with discontinuous paleosols and overbank muds

Sharma et al, 2017

Project to store Perth industrial emissions Very limited onshore storage options, no regional seals

Seal: Southwest Hub Plume Model

• Injection at ~3200m depth

CONOMIC

GEOLOGY

- 800kt/yr for 30 yrs, followed by 1000 yrs shut-in
- Plume is completely contained below 2400m
- For finite injection volumes, baffles can be enough

Sharma et al, 2017

Turtle Play: Great for Petroleum

Turtle Play: Not so good for CCS

Salt Roller: Better for CCS

Gulf Coast CCS

Gulf Coast Saline Storage Capacity

Gulf Coast CCS: Projects underway

Status In identification phase Share knowledge with other hubs

OGCI member company

ExxonMobil, Shell, Occidental, Chevron,

participation

bp, Repsol, Total

Comparing Storage Schemes

Storage Scheme	Key Considerations	Gulf Coast Scale
CO2-EOR	 Dual revenue stream, proven business model Use existing facilities Mature permitting/regulation Limited suitable locations 	~5Gt?
Storage in depleted fields	 Brownfield redevelopmentnew revenue stream, delayed decommissioning Proven seals and reservoirs Compact footprint to monitor Immature permitting/regulation 	~10Gt?
Saline storage	 Giant capacity, large running room Widely available Take advantage of new plays Immature permitting/regulation 	100s of Gt

Conclusion

- CCS has huge growth potential
- The Gulf Coast is a natural place to do it
- CO2-EOR
- Storage in depleted fields
- Saline storage
 - Same principles as petroleum geology, but there are twists
 - Increasing pressure
 - Don't want it back
 - Focus on seal
 - New plays and new drivers
- A new frontier!

Acknowledgments

DOE NETL

This material is based in part upon work supported by the Department of Energy under DOE Award Number DE-FE0031558

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

35